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- Simulation experiments for assessment of the effects of heterogeneity,
sample size, and other local conditions.

- Here: An observed mixed POT model (TMPS of SP1; Zwickau-

Poblitz, Mulde) is used to simulate 1000 samples of 100 and 5000
years each (Fig. 1).
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- The simulation shows a good approximation of the true underlying
model by the (seasonal) AMS with smaller uncertainty bands than the
mixed POT model itself (Fig. 1 left).

- Only for very large samples (here 5000 years) the differences between 2
the AMS and the mixed POT become significant (Fig. 1 right).

- The (seasonal) AMS shows great similarity with the POT model of the
dominant flood type and the overall mixed model (Fig.2).
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Conditioning of a rainfall model on circulation pattern
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- A alternating-renewal precipitation model has been
developed based upon the principal of alternating and
independent wet and dry spells.

- To improve the model’s ability to model different precipitation
types, especially in regards to extremes, a conditioning of
the model on circulation pattern (CP) was undertaken using
an objective fuzzy-rule based classification.
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- Such classifications usually incorporate large scale pressure
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level data as input. Here, the approach was extended to
also include variables such as temperature, wind, humidity

and convective energy potential. Fig. 4 - -
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= The addition of further variables led to a more varied 2 Seasons
and robust classification. Classes were more o Bissoli/Dittmann
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compared to other simpler classification approaches =N
(Fig. 4).
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Validation of the weather generator using hydrological modelling

- A weather generator is used to drive hydrological models with a wide variety of rainfall and climate conditions to assess
the flood predictability

- To validate the weather generator hydrological modelling is used.

= The models are calibrated with 100 years stochastic point rainfall on the statistical measures flow duration curve,
seasonality, summer and winter extreme value distributions.

= The validation is done with 10 x 100 years synthetic rainfall on the annual flood frequency curves.
- First results show, that the synthetic rainfall is well suited to drive the hydrological model in DFFA (Fig. 5).
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